# Typical Construction Program



# Pre-Project Phase



# 1. Pre-Project Phase

Time Allocation: 15%-25% (Approx. 1-3 months)

A. Feasibility Study & Planning (2–4 weeks):

Needs analysis, modular suitability assessment, preliminary cost estimation.

# B. Design & Approvals (4-8 weeks):

lModular design (including BIM modeling) requires greater precision than traditional design (due to module splitting and interface planning).

lApproval timelines may vary based on local regulations

### C. Key Variables:

lDesign iterations (rational module splitting impacts subsequent phases).

lEfficiency of local approval processes (some regions require additional modular certifications).



# Modular Production Phase



Time Allocation: 20%-30% (Approx. 2-4 months)

### A. Factory Prefabrication (8-15 weeks):

lEach module typically takes2-4weeks to produce (including structure, MEP systems, and interior finishes).

lProduction batches align with on-site foundation progress (e.g., 10 modules/week).

# B. Transportation & Storage (4-6 weeks):

lModules are delivered in installation sequence to minimize on-site storage.

# C. Key Variables:

lFactory capacity (automated production lines can reduce time by 1/3).

lModule complexity (fully finished modules take 30%–50% longer than bare modules).



# **On-Site Construction Phase**



Time Allocation: 15%-25% (Approx. 1.5-3 months)

### A. Site Preparation (2-4 weeks):

 $lFoundation\ work\ (requires\ precise\ alignment\ with\ module\ bases),\ faster\ than\ traditional\ methods\ (no\ on-site\ formwork).$ 

# B. Module Installation (1–2 weeks per floor):

lAverage daily installation rate: 4–8 modules (e.g., 20 modules per floor for a hotel project, completed in 3–5 days).

lHigh-rise projects require optimized crane operations (tower cranes vs. mobile cranes).

C. On-Site Completion (2-4 weeks): Exterior cladding integration, non-modular areas (staircases, elevators).

# D. Key Variables:

lWeather impacts (rainy seasons may delay exterior work).

lInstallation precision (errors >5mm may cause interface issues).



# Testing & Commissioning Phase



Time Allocation: 10%-15% (Approx. 2-4 weeks)

A. Systems Integration Testing (1–2 weeks):

MEP and fire safety systems (20% faster due to pre-integrated modular utilities).

B. Regulatory Inspections (1-2 weeks):

Some regions require modular-specific certifications (e.g., UK's BS 3632).

# **Handover & Operations Phase**

Time Allocation: 5%–10% (Approx. 1–2 weeks)
Client training, document handover, and final cleaning.

**Timeline Comparison by Project Type** 

**Project Type Total Duration Time Saved vs. Traditional** 

Small Modular Housing4-6 months40%-50%Mid-Scale Hotel8-10 months30%-40%High-Rise Apartment10-12 months25%-35%









# Key Time-Saving Strategies

Parallel Operations: Synchronize factory production with on-site groundwork (saves 20%–30% time).

Standardized Design: Fewer module types accelerate production (5%–10% speed gain per reduced type).

Digital Management: Use BIM and IoT for real-time progress tracking (e.g., 1-day factory delay may cause 3-day on-site stall).





# **Risks & Buffer Recommendations**

Design Freeze: Finalize designs before factory production (allow a 2-week buffer).

Supply Chain Delays: Stock critical materials (e.g., steel) with 10% redundancy.

Weather Contingency: Reserve 10%–15% time buffer for on-site work.





Phone 0405860421

Email sales@ecoprestige.com.au

Visit https://ecoprestige.com.au

# Join our community









